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Fig. 1: The humanoid robot (Unitree G1) demonstrates a diverse set of loco-manipulation tasks under teleoperation: (a) returning a ping-pong
ball from varying positions; (b) balancing a ping-pong ball on a paddle through rapid orientation adjustments; (c) juggling a ping-pong ball;
(d) catching a frisbee while moving; (e) catching thrown objects using a handheld basket while in motion; and (f) cooperatively lifting a
box. Tasks (a-e) are performed using an optical MoCap system to achieve lower latency, while task (f) is operated using a VR system.

Abstract—Building a low-latency humanoid teleoperation sys-
tem is essential for collecting diverse reactive and dynamic
demonstrations. However, existing approaches rely on heav-
ily pre-processed human-to-humanoid motion retargeting and
position-only PD control, resulting in substantial latency that
severely limits responsiveness and prevents tasks requiring rapid
feedback and fast reactions. To address this problem, we propose
ExtremControl, a low latency whole-body control framework that:
(1) operates directly on SE(3) poses of selected rigid links,
primarily humanoid extremities, to avoid full-body retargeting;
(2) utilizes a Cartesian-space mapping to directly convert human
motion to humanoid link targets; and (3) incorporates velocity
feedforward control at low level to support highly responsive
behavior under rapidly changing control interfaces. We further
provide a unified theoretical formulation of ExtremControl and
systematically validate its effectiveness through experiments in
both simulation and real-world environments. Building on Ex-
tremControl, we implement a low-latency humanoid teleoperation
system that supports both optical motion capture and VR-based
motion tracking, achieving end-to-end latency as low as 50 ms
and enabling highly responsive behaviors such as ping-pong ball
balancing, juggling, and real-time return, thereby substantially
surpassing the 200 ms latency limit observed in prior work.

I. INTRODUCTION

Humanoid robots have long attracted significant attention
in the robotics community due to their human-like morphol-
ogy and kinematic structure. Because modern environments,

tools, and tasks are predominantly designed around human
bodies, humanoids represent a natural embodiment for general-
purpose robotic systems capable of operating in unstruc-
tured, human-centric settings. Moreover, the close correspon-
dence between humanoid and human morphology enables
the direct exploitation of large-scale human motion and skill
datasets, alleviating the reliance on expensive and limited
robot-collected data. However, these same properties that make
humanoids appealing also pose substantial challenges for tradi-
tional control frameworks. In particular, the high-dimensional
state and action spaces, underactuated floating-base dynamics,
intermittent contacts, and frequent hybrid mode transitions
inherent to humanoid locomotion and manipulation render
classical model-based control approaches difficult to scale
and deploy robustly in practice. Accurate modeling, real-
time optimization, and contact-consistent planning become
increasingly intractable as task complexity grows, motivating
the exploration of alternative control paradigms better suited
to the complexity of humanoid systems.

With the advent of large-scale parallel simulation, reinforce-
ment learning has become a dominant paradigm for humanoid
locomotion and whole-body control, and the design of control
interfaces has undergone a clear evolution over time. Inher-
iting from quadruped locomotion, early approaches relied on



Teleoperation System | Control Interface Wrist Control  Foot Control | Full-Body Tracking Joint-Space Retarget End-to-End Latency
HOMIE [4] Exoskeleton v X X X ~ 454 ms
HumanPlus [13] RGB Camera v v v v ~ 340 ms
OmniH20 [17] VR v X X X ~ 185 ms
H20 [18] RGB Camera X v v v ~ 373 ms
AMO [27] VR v X X v ~ 380 ms
CLONE [30] VR v X X X ~ 178 ms
AMS [41] MoCap X v v v ~ 201 ms
TWIST [56] MoCap X v v v > 700 ms
TWIST2 [57] VR v v v v ~ 234 ms
ExtremControl (Ours) VR, MoCap v v v X ~ 54ms

TABLE I: Existing humanoid teleoperation systems. End-to-end latencies are estimated using optical flow on the authors’ released videos.

explicit Cartesian-space objectives [17, 18] or command-based
interfaces [58| |61]]. Subsequently, influenced by advances in
physics-based character animation [33) 42], many methods
shifted toward dense joint-space pose supervision adopted
from the human model, enabling humanoids to reproduce
expressive and highly dynamic motions derived from human
demonstrations [13} 20]]. More recent efforts further narrowed
the control objective to optimization of selected reference
trajectories, achieving high-fidelity motion reproduction at the
cost of generalization across tasks and behaviors [1, 16} (19, 31]].
In parallel, teleoperation-oriented methods introduce inter-
mediate representations to flexibly map human motion to
humanoid embodiments [27, 41| 56} [57]. These approaches
first compute target poses for a set of robot links and then solve
inverse kinematics to obtain joint configurations that realize
those poses. However, although policies are executed in joint
space, the underlying optimization objective remains defined
in terms of matching Cartesian link poses.

A large portion of the literature on humanoid control focuses
on teleoperation [4} 13, [17, [18, 27, 30, 41} 156l 1571, as it
provides an effective mechanism for collecting data to train
general-purpose robotic intelligence. Because teleoperation
operates in a human-in-the-loop closed-loop setting, system
latency critically determines the operator’s ability to perform
responsive tasks. Among the existing teleoperation systems
listed in Tab. I we observe a striking consistency: most
real-time humanoid teleoperation systems exhibit end-to-
end latencies around 200ms, largely independent of the
robot, retargeting strategy, or the length of future motion used
(L7, 130} 41} 156l 57] We substantially surpass this apparent
latency barrier by moving beyond the widely used position-
only PD control paradigm. Instead, we introduce a velocity
feedforward term that reduces the low-level control response
time by approximately 100 ms, rendering the latency intro-
duced by full-body human-to-humanoid retargeting (~10 ms)
non-negligible. Among prior methods that rely on position-
only PD control, He et al. [17] and Li et al. [30] achieve the
lowest latency by directly controlling the Cartesian positions of
a selected set of robot links; however, foot links are excluded,
which limits their capability to support complete whole-body
control.

I'We estimate latency by running optical flow on reported videos. Fu et al.
[13] and He et al. [[17, [18] used Unitree H1.

To address this problem, we introduce ExtremControl, a

humanoid whole-body control framework that: 1) maps the
human motion to SE(3) of selected rigid links, including all
humanoid extremities, through a Cartesian-space mapping;
2) takes target link poses directly as policy input to avoid
latency caused by joint-space retargeting; and 3) incorpo-
rates velocity feedforward control for extremely responsive
low-level actuation, supported by a whole-body impedance
calibration that tightly couples simulation with real-world
deployment. The overall design is aimed at minimizing system
latency while preserving full whole-body control capability.

The contributions of this work are fourfold. First, we present
a unified theoretical formulation for ExtremControl from robot
kinematics, dynamics, and policy learning. Second, we val-
idate the effectiveness and optimality of this formulation
through extensive experiments conducted in both simulation
and on real humanoid platforms. Third, we introduce an
optical-flow—based latency estimation method for measuring
the end-to-end delay of teleoperation systems. Finally, lever-
aging ExtremControl, we develop a humanoid teleoperation
system that achieves as low as 50ms latency, thereby
unlocking hardware capabilities that have remained dormant
due to non-extreme system design. The system operates at
near-perceptual latency, enabling fluid human-in-the-loop ma-
nipulation, and significantly enhancing both the capability and
efficiency of teleoperation-based data collection.

II. KINEMATICS

In this work, we deliberately avoid full-body human-to-
humanoid retargeting within the policy loop. Instead, we
formulate the control interface in terms of rigid link poses
of selected robot links, which are obtained through Cartesian-
space mapping from the corresponding human link poses.

A. Tracking Objectives

The choice of tracking objectives fundamentally determines
the feasibility and robustness of a humanoid teleoperation
system. Thus, selecting an appropriate subset of links as
control interface is critical. It must be expressive enough to
convey the operator’s intent for manipulation, locomotion,
and global posture, while remaining minimal to avoid over-
constraining the system and amplifying sensing noise.
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MoCap settings.

a) Application Scenario: In most practical teleopera-
tion scenarios, humanoid robots are not required to perform
contact-rich whole-body manipulation. While such extreme
cases exist [52]], they are relatively rare and further com-
plicated by scale mismatch between human and robot em-
bodiments. Under this contact-sparse assumption, we focus
on the most common and practically relevant configuration:
hands for manipulation, feet for locomotion, and the torso and
pelvis for representing the global body pose. Accordingly, as
illustrated in Fig. |2} we select the highlighted links of Unitree
Gl1, yielding T" = [R",p"]® € SE(3)% where r stands for
robot.

b) Kinematic Sufficiency: The six selected links are suf-
ficient to describe meaningful whole-body motion while inten-
tionally leaving internal joint configurations under-constrained.
The Unitree G1 has seven degrees of freedom per arm and
six per leg. Even though the Cartesian pose of hand does
not uniquely determine the corresponding joint configuration,
joint limits, self-collision constraints, and temporal continuity
strongly restrict the feasible solution space, making smooth
trajectories effectively identifiable from the tracked links. We
further demonstrate in Sec. that directly using extremity
poses achieves performance comparable to that obtained when
retargeted joint configurations are included.

c) Teleoperation Input Modalities: Optical motion cap-
ture is restricted to limited capture volumes, video-based pose
estimators yield noisy results, standard VR headsets do not
provide foot tracking, and exoskeleton systems are inconve-
nient and expensive. In contrast, VR systems augmented with
motion trackers (i.e. PICO 4 Ultra and VIVE Ultimate Tracker)
provide six tracked poses, consisting of the headset, two
hand controllers, and three trackers mounted on the waist and
both feet. This configuration naturally aligns with the selected
tracking objectives of Unitree G1, providing corresponding
human link poses T" € SE(3)% where h stands for human.

B. Cartesian Space Mapping

Based on tracking links selected in Sec. we define a
Cartesian-space mapping operator M : SE(3)¢ — SE(3)°,
which maps the set of 6 tracked human link poses T” to
the corresponding humanoid link targets T". The design of
M follows three principles: (i) anthropomorphic compen-
sation: explicitly handling differences in body proportions;

(i1) mathematical consistency: reproducing identical poses at
calibration; and (iii) real-time efficiency: avoiding joint-space
optimization. As a result, the proposed mapping produces
smooth, scale-consistent SE(3) targets for a minimal set of
humanoid links, incurs negligible computational overhead.

1) One-shot Calibration: The mapping is parameterized
through a one-time calibration procedure performed at sys-
tem initialization. During calibration, the human stands in
a neutral pose as shown in Fig. To resolve coordinate-
system differences, we estimate a per-link rotational offset
during calibration. These offsets are held fixed and are applied
identically at run-time.

To compensate for body shape differences, we explicitly
measure a small set of anthropomorphic measurements from
T”, which is essential for respecting the relative positioning
and motion limits of humanoid extremities:

o Pelvis height: Z{)lelvis = p{jelvis,z;

o Shoulder position in pelvis frame:
h _ h _ L ho .

pk_shoulder - pk_hand,yz Zpelvis’

o Arm length: l,’;_arm = pg_hand,w.
for each side k € {left, right}.

The corresponding humanoid parameters {z;elvis, Pl_shoulder®
% amt are obtained directly from the humanoid kinematic
model as constants.

Finally, we record a fixed foot offset O _foot = Pg_foor —
(z;’elvis/zge]vis) - P} oo 10 ensure stable standing and pose
uniformity. pj. (., represents the foot position in the humanoid
frame when standing at the origin.

2) Per-frame Mapping: At run-time, given a new frame
of tracked human poses T”, the humanoid target poses are
computed as T" = M(T"):

Pelvis and feet are scaled according to the ratio between
humanoid and human pelvis heights

r
Z. .
r _ “pelvis h
Ppelvis, k_foot = * Ppelvis, k_foot* (1
pelvis

Torso is not taken directly from the captured data. Its posi-
tion is rigidly attached to the pelvis following the humanoid’s
kinematic structure:

T T r )
Ptorso = Ppelvis + Rpelvispdlffv )

where pgir is the fixed pelvis-to-torso displacement in the
humanoid model. The torso orientation is directly mapped.

Hands are mapped by first aligning the shoulder position
in the pelvis frame and then scaling the arm length, such that
T% pang Satisfies

( Z_hand(TtTorso) - pz_shoulder) / lz_arm
— h
= (Tz_hand (Tt}érso) t— pz_shoulder) /lk_arm . (3)

This computation consists solely of rigid transformations
and can be directly calculated in closed form. Unlike joint-
space retargeting, which is inherently sequential and must wait
for the previous frame, our mapping is fully feedforward and
parallelizable. Although this difference may be negligible at
50 Hz, retargeting will eventually fail to keep up as the control
frequency increases.



III. DYNAMICS

Position-only PD control is widely adopted in learning-
based locomotion methods, including all systems listed in
Tab. I However, the absence of a velocity term inevitably
introduces substantial tracking delay, even under constant
joint velocities. To overcome this limitation, we systematically
formulate a velocity feedforward control framework.

A. Whole-Body Impedance Calibration

To facilitate a principled discussion of PD controller de-
sign, we calibrate joint-level PD gains using a sequen-
tial, simulation-based procedure that estimates effective joint
impedance under whole-body closed-loop control. Joints are
initialized with random gains and processed from distal to
proximal to reduce coupling effects. For each joint in cal-
ibration, the derivative gain is temporarily set to zero and a
small perturbation Agq is applied, inducing oscillations that are
locally modeled by

Megg + kp(q - QO) =0, 4)

where Mg captures both physical inertia and closed-loop
coupling. To robustly estimate Mg, we sample proportional
gains kz(f) ~ U(0.5ky, 1.5k,) in different parallel simulation
environments e € E and measure the corresponding oscillation
periods P(®) in parallel simulations, yielding

e) ( ple)\2
By (P)

M(e) —
eff (2m)?

®)
The average Mg is then used to update the PD gains with
target natural frequency w, and damping ratio ( as

b=V, ko=2Mgwn  ©)

This process is iterated over all joints to obtain dynamically
consistent gains that provide a stable and well-scaled initial-
ization for downstream control and learning.

B. Velocity Feedforward Control

We consider position-only PD control commonly adopted
in learning-based locomotion,

T = kp(q — q) — kag, (7

where 7 is the applied joint torque and ¢; denotes the target
joint position. We extend this formulation by incorporating a
velocity feedforward term,

T = kp(q — q) — kaq + nkads, ®)

where 1 € [0, 1] is the velocity feedforward ratio.

For analysis, we model the joint dynamics as Mcgg = 7.
Following the whole-body impedance calibration described in
I1I-A] we parameterize the PD gains using a target natural
frequency w,, with critical damping ¢ = 1. Substituting into
the closed-loop dynamics yields

G+ 2wnd + wiqg = 2N wyds + Wa gy 9)

Since the closed-loop system is linear and time-invariant, its
response to an arbitrary reference trajectory can be expressed
as a superposition of responses to sinusoidal components via
Fourier decomposition. Therefore, without loss of generality,
we analyze a sinusoidal reference

qi(t) = Asin(wt), (10)

which fully characterizes the frequency-dependent tracking
behavior of the controller.

Taking the Laplace transform, the transfer function from the
reference ¢, to the realized joint position ¢ is

W2 + 20wy s
82 + 2w s + w2’

H(s) = (1)
For sinusoidal input ¢;(t), the steady-state response takes
the form

q(t) = A|H (jw)| sin (wt + ¢(w)), (12)

where the phase difference between the realized motion and
the reference is given by

H(w) = tan1<2n:;> — tan~* (%) . (13)

In the low-frequency regime w < wy,, the phase shift can
be interpreted as an equivalent tracking delay,
¢w) _2(1—n)

(= -2 o

w Wn

(14)

C. Discrete-Time Compensation

In practice, policy inference and communication impose a
fixed control period At, during which the target command is
held constant. We analyze the effect of velocity feedforward
under this discrete-time execution using a conservative local
approximation.

We assume that at the beginning of a control interval the
joint matches the reference (¢ ~ ¢), and that the desired
trajectory evolves linearly within the interval with constant
velocity ¢;. Under zero-order hold, the average deviation
between the true reference and the held target over one control
step is

15)

The corresponding proportional and feedforward torque con-
tributions are

Ty = deQf (16)

To avoid additional acceleration within a single control
interval that may lead to overshoot, we require

Tp + 7o < Kade 17)
which yields an upper bound on the feedforward ratio,
n At
n<1- 2t (18)

- 4



IV. PoOLICY LEARNING

Existing human motion datasets are large in scale and
diverse in difficulty. To ensure reproducibility and facili-
tate systematic parameter optimization, we adopt a three-
stage learning framework. First, we train a teacher policy
Teacher Using fine-grained, high-difficulty motion data to-
gether with privileged observations, enabling robust handling
of dynamic motions. Second, we distill a deployable student
policy Tstudent that operates with a single future motion frame.
Finally, we fine-tune the distilled policy on a large and diverse
motion dataset to obtain the teleoperation policy Tteleop-

A. Observation

Since our control interface operates solely on a selected
set of robot link poses, we introduce a future interpretation
function to encode reference motion over a finite horizon H

Oref(H) =J( ;:t+H’ ::t+H’T;fl) (19)

where V" = T"(T")~! represents the target velocities in the
global frame. The detail of .# is provided in the appendix.
To explicitly capture extremity pose errors and account for
the IMU being mounted on the pelvis of the Unitree G1, we
express both target poses T”' and actual poses U™ in the
pelvis frame, where U’ is obtained via forward kinematics
from the pelvis, and compute the local pose discrepancy as

o = (U)~'T", (20)

For deployable policies Tsgudent and Tieleop, WE USE a single
future frame to maximize responsiveness, resulting in the
observation vector [07*f(1), 0%, oPPTi®] where oPTP™C de-
notes proprioceptive observations. The oracle policy Tteacher
leverages a longer horizon together with privileged ob-
servations oP™V, including global-frame pose discrepancies,
joint configurations after inverse kinematics, domain ran-
domization parameters and foot contact forces, yielding
[07*f(32), 0% gProPrio oPriv] The complete specification of
observations is provided in the appendix.

B. Reward Function

The reward function is composed of two categories: tracking
rewards and regularization rewards. In addition to penalizing
discrepancies between the target and actual poses of the
selected links, we introduce an auxiliary reward that tracks
retargeted joint configurations. This term encourages explo-
ration during training, including for the teleoperation policy
Tteleop, Which does not directly observe the retargeted joint
configuration. We adopt GMR [2] for full-body joint-space
retargeting with optimization over a small subset of retargeting
targets. The regularization terms are primarily designed to
constrain joint torques and suppress torso oscillations.

To improve exploration stability in online reinforcement
learning, we formulate all reward terms as negative-valued
and compute the exponential of their weighted sum as the
total reward. This formulation ensures that (i) the per-step
total reward lies within (0, 1), and (ii) the gradient of the total
reward with respect to each individual term is preserved. The

complete specification of the reward functions is provided in
the appendix.

C. Policy Learning

In our setting, retargeted joint configurations are not in-
cluded in the observation space of Ticlcop, Which makes
exploration of complex motions from scratch particularly chal-
lenging. Compared to pure reinforcement learning (RL) [13]]
or reinforcement learning followed by behavior cloning
(RL+BC) [56], we find that an RL+BC+RL training paradigm
offers greater flexibility across learning stages and improved
exploration stability. Specifically, we decompose the learning
of a general tracking policy into three stages: (1) training
an oracle teacher policy that handles highly dynamic and
difficult motions using privileged observations and longer
future horizons; (2) distilling the teacher into a deployable
student policy by removing observations unavailable in real-
world deployment and reducing the future horizon to minimize
teleoperation latency; and (3) expanding the distilled policy
over a broad motion dataset to obtain a task-agnostic whole-
body controller.

We employ PPO [47] for online training of both Tieacher
and Trcleop, USing an entropy curriculum that gradually anneals
the entropy coefficient to zero to encourage full exploitation
at the end of training. During the second RL stage, to pre-
vent instability caused by an untrained critic overwriting the
distilled policy, we freeze the actor network for the first 200
training iterations, allowing the critic to converge under a fixed
policy. Behavior cloning in the distillation stage is performed
using DAgger [44], while the critic network is not trained
at this stage, as PPO relies on stochastic action sampling
whereas DAgger employs deterministic expert actions, leading
to inconsistent value targets.

V. EXPERIMENT SETUP
A. Simulation Setup

We leverage Genesis [3] as the simulation backbone, with
a simulation timestep of sim_dt = ﬁ s and a single
physics substep across all experiments, including whole-body
impedance calibration, velocity feedforward ratio validation,
and policy training. During policy training, we run 8,192
parallel environments, achieving over 100k policy steps per
second on an NVIDIA L40s GPU with a control decimation of
4. Detailed simulation parameters and domain randomizations
are provided in the appendix.

B. Real-World Robot Setup

Following common practice in control literature [16], we
set the PD gains in simulation based on a target natural
frequency of w,, = 10rad/s with a damping ratio ¢ = 1. The
velocity feedforward ratio is set to 0.9, while it is disabled for
all indirect-drive joints, which are ankle and waist joints for
Unitree G1. The low-level PD controller operates at 1000 Hz,
whereas the high-level control policy runs at 50Hz. This
setting yields an upper bound on the velocity feedforward
ratio of 0.95. To ensure consistent forward kinematics in



observation computation, we apply a low-pass filter with
coefficient = 0.1 at 1000 Hz to smooth the measured joint
configuration.

C. Motion Dataset

As observed in prior work [56 57]], incorporating in-domain
motion data significantly improves policy performance during
teleoperation. We collect a set of motion sequences Sieleop
using an optical motion capture system; however, to ensure
fair evaluation and reproducibility, these user-specific datasets
are excluded from policy training experiments unless explicitly
stated.

Aiming for task-agnostic policy learning, we use the widely
adopted LAFANI dataset Sjafan [15] retargeted by Uni-
tree [35], as dynamic and challenging motions, and AMASS
Samass [36] as a large-scale and diverse motion corpus. Unless
otherwise specified, we use Sjafan in teacher and student
learning stages, Sjafan U Samass in RL finetune stage. For
evaluation, we additionally collect a trajectory St’eleop
{Seval}; Seval & Steleop comprising common daily motions
to assess teleoperation performance, and we use a subset of
LAFANI S/ C Slafan as the dynamic-motion evaluation
benchmark.

D. MoCap System

We employ an optical motion capture system, Opti-
Track [24]], to obtain the global position and rotation of human
body links. Although the OptiTrack Motive software is capable
of reconstructing a full-body human pose, our system only
utilizes the subset of links described in Sec. which
are sufficient for the proposed Cartesian-space mapping and
tracking framework.

Human motion is streamed at 120 Hz. In contrast to TWIST
[S6], we implement a non-blocking streaming pipeline specifi-
cally designed for real-time control rather than offline record-
ing. The pipeline minimizes transmission latency such that,
when link poses are queried, the effective delay is bounded
within a single MoCap streaming cycle (ﬁ s). In a local
setup, the system latency is less than 10 ms.

E. VR System

We employ a VR-based input system composed of a Meta
Quest 2 [39] headset, hand controllers, and three VIVE Ul-
timate Trackers [8]], with SteamVR [9] used as a unifying
middleware to resolve cross-device compatibility. The trackers
are mounted on the waist and both feet as in Fig. [2] providing
direct pose measurements for the corresponding body links.

Because the torso pose is not directly tracked, we estimate
the torso orientation from the planar motion of the headset
expressed in the pelvis frame. Specifically, we compute the
rotation that aligns the vertical axis Z with (Rpelvis) ™ Pheadsets
along the rotation axis orthogonal to the plane spanned by
them. The headset’s own orientation is intentionally not used,
allowing the user to freely observe the environment.
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VI. EXPERIMENT RESULTS
A. Whole-Body Impedance Calibration

As shown in Fig. [3| we evaluate the proposed whole-body
impedance calibration under different target natural frequen-
cies w, and initial proportional gains k, on the Unitree G1
elbow joint, while three additional distal joints are calibrated
simultaneously but not visualized. The derivative gain ky is
computed using a fixed damping ratio ( = 1 as defined in
Eq. (6). Despite large variations in initialization, the calibration
process consistently converges to stable effective impedance
values that differ across w,,, demonstrating robustness to initial
gains and reliable recovery of Mg induced by whole-body
coupling.

B. Velocity Feedforward Control

Using the PD gains obtained from whole-body impedance
calibration, we evaluate the low-level tracking delay predicted
by Eq. (T4) in both simulation and on hardware. A sinusoidal
reference with frequency w = 3.14rad/s is applied as the
target joint position ¢y, and the tracking delay is estimated via
minimum cross-correlation between the target and measured
joint positions.

As shown in Fig.[d] the theoretical predictions closely match
the measured delays for w,, = 10rad/s and w, = 15rad/s,
with the remaining discrepancy explained by the control period
At = 0.02,s. For w,, = 5rad/s, deviations arise from viola-
tion of the assumption w < w,, and numerical inaccuracies.
With a control update frequency of 50 Hz, the measured delay
increases at higher velocity feedforward ratios, producing the
upward trend observed at the right end of the curves. This
effect is consistent with the discrete-time overshoot described
in Sec. and reflects a bias in the delay estimate rather than
a true increase in physical response latency; further analysis

is provided in Sec.
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(a) Ablation on Velocity Feedforward Ratio 7 y \\‘{ 4P ‘W =
Tteleop X Slafan Tieleop X Steleop "ol :\g : .

n=0.0 0.34 0.103 0.42 0.074  0.067 0.24 of. o S Iy

n=02 033 0101 040 0091 0070 0.22 Fig. 5: Optical flow for latency analysis.

n=04 0.34 0.103 0.41 0.085  0.067 0.25

n=0.6 0.32 0.104 0.40 0.093  0.069 0.25 n 00 02 04 06 08 09 09

n=0.8 0.31 0.103 0.38 0.075  0.067 0.22 Loverann (ms) 155 131 104 82 69 64 65

n = 0.9 (Ours) 0.32 0.104 0.41 0.080 0.071 0.24 Leontrol (ms) 205 168 130 92 62 47 -

n=1.0 0.36 0.101 0.41 0.113 0.075 0.26 2 We attach an additional 0.91 kg weight to each rubber hand.

(b) Ablation on Observed Future Length [

Tteacher X S

lafan

/
Tstudent X Slafan

=1 0.19 0.076 0.37 0.28 0.087 0.42
=2 0.19 0.077 0.37 0.28 0.087 0.41
l=4 0.18 0.078 0.36 0.29 0.090 0.41
=38 0.17 0.076 0.34 0.28 0.087 0.39
=16 0.16 0.076 0.35 0.26 0.088 0.40
| = 32 (Ours) 0.14 0.074 0.34 0.25 0.085 0.39
=064 0.14 0.072 0.35 0.28 0.085 0.40
(c) Ablation on Learning Strategy
Sfagan Steteon

RL 0.49 0.125 0.49 0.11 0.075 0.24
RL + BC 0.25 0.085 0.39 0.098 0.061 0.38
RL +BC? 0.33 0.110 0.48 0.095 0.067 0.27
Ours 0.30 0.099 0.41 0.080  0.064 0.24
Ours + Smlcopb 0.31 0.099 0.41 0.076  0.062 0.22
Ours + 09t5¢ 031  0.093 038  0.087  0.055 0.20

4 Add Samass in teacher and student learning stages.

b Add Steleop in all learning stages.

¢ The retargeted joint configuration g; is observable in student and teleoper-
ation policy learning stages.

TABLE II: Ablations on Policy Learning. Epos (m) represents the
global tracking position error; E_,os (m) represents the links tracking
position error in pelvis frame; FE) ,ots (rad) represents the links
tracking rotation error in pelvis frame.

C. Policy Learning Ablations

We evaluate the sensitivity of policy performance to the
velocity feedforward ratio 7. As shown in Tab. [lI| (a), per-
formance remains largely stable across a wide range of 7,
with global tracking error F,,,s within a few centimeters and
local link error I o5 below 1 cm. In contrast, n = 1.0 leads
to severe overshooting and noticeable performance degrada-
tion, corroborating our theoretical prediction that 1 must be
bounded under limited high-level control frequencies. This
empirically validates the upper bound derived in Sec.
Combined with the latency analysis in Tab. selecting
n € {0.8,0.9} represents a trade-off between tracking accu-
racy (4mm, 0.02rad) and latency (5 ms). Notably, as shown
in Tab. attaching an additional 21b weight to each hand
increases statistically detectable latency.

We further observe an intriguing phenomenon in the policy
distillation process: because the student policy is constrained
to operate with only a single future frame, a stronger teacher

TABLE III: Ablation of end-to-end latency under different velocity
feedforward ratios, with the teleoperation system operating in VR
mode.

does not necessarily lead to a stronger student. In particular,
as shown in Tab. (b), we find that allowing the teacher
to observe up to 32 future frames represents a practical
sweet spot. Increasing the teacher’s future horizon beyond
this point leads to degraded performance after distillation.
This suggests a fundamental capacity mismatch between the
teacher and student policies, highlighting the importance of
aligning the teacher’s information horizon with the student’s
representational and observational constraints.

We ablate different learning strategies in Table ()
and draw the following conclusions. (1) RL+BC trained on
dynamic motions Sjufan achieves the best performance on
dynamic tasks, whereas the proposed RL+BC+RL paradigm
attains the best overall performance on the unseen trajectory
set St’eleop among the three learning strategies. (2) Consistent
with prior observations [56, [57], incorporating in-domain
data significantly improves tracking performance on S{,,-
(3) Eliminating joint-space retargeting introduces marginal
tracking errors of 7 mm in position and 0.02rad in orientation,
which represent a favorable trade-off for the 10 ms latency
reduction it enables.

D. Latency Analysis

We evaluate the end-to-end system latency using a video-
based analysis, which does not rely on internal timestamps and
provides externally observable cumulative latency across
all systems. The latency is estimated directly from recorded
videos by analyzing motion consistency between the human
operator and the humanoid robot using optical flow. As shown
in Fig. 5] we define tracking regions on both the human and
robot that exhibit clear directional motion, then compute the
optical flow [10] between consecutive frames and average it
within each region. The resulting flow vectors are projected
onto a predefined motion direction (e.g., vertical up—down in
Fig.[5), producing a one-dimensional motion signal per frame.

To facilitate robust temporal alignment, we perform a simple
reciprocating motion by hand during video recording, resulting
in a quasi-periodic motion signal with clear phase structure.
For other systems with video demonstrations, we select video
clips and assign tracking areas that contain reciprocating mo-
tions or motions closely approximating this pattern, as shown
in the middle column of Fig. [6] enabling fair comparison. We
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standardize the one-dimensional motion signal for both track-
ing areas. The system latency is estimated by measuring the
temporal offset between the two sets of signals via waveform
alignment, which is robust to amplitude differences.

We apply this analysis across multiple teleoperation sys-
tems, including prior teleoperation systems [17} 30, 41} [57]]
and our system using both optical motion capture and VR
input. As shown in Fig. [6] our method exhibits consistently
tighter phase alignment between human and robot motion,
indicating lower end-to-end latency. Quantitatively, as shown
in Fig. [6 and Tab. [I] all the existing systems exhibit an overall
latency exceeding 170 ms except for ours: the MoCap-based
setup achieves an average latency of 54 + 4 ms, while the
VR-based setup achieves 64 4 8 ms.

Furthermore, we analyze the end-to-end latency under dif-
ferent velocity feedforward ratios, as reported in Table [T} A
linear regression yields the following approximation:

éoverall =0.58 - gcontrol + 32ms (21)

with R? = 0.99. This result indicates that low-level tracking
delay does not translate one-to-one into end-to-end system
latency, as evidenced by the ideal case of a policy that perfectly
tracks a single trajectory, for which the overall latency would
approach zero despite nonzero low-level delay due to the
motion prior encoded in the policy. The remaining offset of
32 ms is attributed to communication from the VR system to
the host PC, Cartesian-space mapping, policy inference, and
the finite update rate of the control targets.

VII. RELATED WORK

A. Reinforcement Learning for Locomotion

Reinforcement learning has become a dominant paradigm
for learning agile locomotion policies, due to its ability to
optimize high-dimensional control objectives directly from

interaction. Early work demonstrated that model-free RL can
produce robust locomotion behaviors in simulation and trans-
fer them to real robots through domain randomization and
privileged training signals [12} 26, 146l I51]. Subsequent studies
improved robustness and versatility by introducing curriculum
learning, command-conditioned policies [S} [7, 23| 138l (45 160].
Hybrid approaches further combine trajectory optimization,
model-based priors, or analytical controllers with RL fine-
tuning to enhance stability and tracking accuracy [25, 29|
54, 155]. Together, these works establish RL as a practical
framework for locomotion across diverse tasks and robot
embodiments.

B. Humanoid Whole-Body Control

Compared to quadrupeds, humanoid locomotion and loco-
manipulation involve high degrees of freedom, underactu-
ated contacts, and complex whole-body coordination. Whole-
body control (WBC) frameworks address these challenges by
tracking joint-space or task-space objectives under full-body
dynamics and contact constraints [[7, [11} 21} 22| 48} |49]. Re-
cent approaches integrate reinforcement learning with WBC,
using motion capture and animation data to provide expressive
reference motions [14, [28. 133} 34, 35, 137, 141, 142, 152, 159].
Humanoid teleoperation, which is a fundamental mechanism
for large-scale data collection, fits naturally into this paradigm.
Early methods specify Cartesian objectives for selected body
links [4, [17, [30L 140l 43) 53] with control interfaces ranging
from exoskeleton to single rgb camera; whereas recent ap-
proaches relied on full-body joint-space retargeting, incurring
added latency [} 2, [18} 132} 150l 156]. Overall, WBC serves as
a unifying backbone for complex humanoid systems.

VIII. CONCLUSION

In this work, we present ExtremControl, a humanoid whole-
body control framework designed to minimize teleoperation
latency while preserving full whole-body control capability.
Building on ExtremControl, we develop a humanoid teleoper-
ation system that achieves end-to-end latencies as low as 50 ms
and demonstrate its effectiveness on a range of highly respon-
sive tasks. Despite these advances, several limitations remain.
First, the Unitree G1 has seven DoFs in each arm, which
introduces inverse kinematics ambiguity. When combined with
direct extremity pose mapping and the evenly distribution of
the wrist and elbow joints along the forearm, this can lead to
unnatural arm poses. Second, while our work primarily targets
on the responsiveness arising from control design, lower-
body latency is governed by policy-level regulation of the
center of mass, such as distinguishing whether the teleoperator
intends to initiate walking or simply lift a foot. Third, our
experiments use non-articulated rubber hand; extending the
system to parallel grippers or dexterous hands introduces
additional actuation and communication latencies. We aim to
address these limitations in future work and move toward a
near-human, low-latency humanoid data collection platform
for general-purpose robotic intelligence.
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APPENDIX
A. Joint-Space Retarget Ablation

Due to the page limit of the main paper, we provide a
detailed discussion of the impact of joint-space retargeting on
teleoperation performance in this section.

1) Latency: We benchmark the computational cost of dif-
ferent retargeting strategies. In our setting, joint-space retarget-
ing targets the poses of the six robot links defined in Sec. [[I-A]
whereas the vanilla GMR formulation [2] optimizes over 14
targets and is inevitably more expensive. All measurements
are obtained on an Apple M4 processor (4.4 GHz), which
is approximately 2-3x higher in clock frequency than the
onboard CPUs commonly installed on Unitree robots (2.0 GHz
for Jetson Orin NX and 1.7GHz for Jetson Orin Nano).
Consequently, the reported runtimes are expected to be 3—4x
faster than those on the onboard hardware. All experiments

are conducted on the S, dataset.
Strategy AVG 50% 90% 95% 99% 100%
Cartesian-Space 0.29 0.28 0.31 032 035 1.24
Joint-Space (raw) 2.69 2.20 2.31 5.86 14.4 21.0
Joint-Space (fine) 7.34 6.10 11.5 12.5 18.2 31.5
Joint-Space (parallel)  13.1 132 19.6 202 25.5 40.5

TABLE IV: Ablation on retargeting time cost.

Joint-Space (raw) performs inverse kinematics (IK) se-
quentially on the six tracked links as defined in Sec. [[I-A]
which differs slightly from conventional full-body human-
to-humanoid retargeting settings that also track intermediate
joints such as the elbows and knees. As a result, the inher-
ent kinematic ambiguity can lead to implausible solutions.
However, this reduced constraint set also lowers computational
complexity: the average runtime of 2.9 ms indicates that the
IK solver typically converges within only a few iterations,
highlighting the efficiency and consistency of the proposed
Cartesian-Space mapping.

To mitigate the irrational solutions produced by IK, we
manually initialize the shoulder yaw, elbow, and wrist pitch
joints at each IK iteration. This strategy substantially improves
the stability of Joint-Space (fine) at the cost of increased
computation time.

As discussed in Sec. the Cartesian-space mapping is
inherently parallelizable. To ablate this property, instead of
implementing a fully parallel retargeting pipeline, we reset
all joint configurations (excluding the floating base) to zero
at each IK iteration. This configuration renders Joint-Space
(parallel) nearly parallelizable and provides a conservative
estimate of the performance of a truly parallel retargeting
approach.

2) Accuracy: In the main paper, we conclude that providing
retargeted joint configurations improves policy accuracy when
the retargeted robot link poses in SE(3) are already included
in the observation and the joint configurations are added as
auxiliary inputs. As shown in Table [V] adding informative
observations consistently improves performance regardless of
the retargeting quality.

Tracking Error | F)_pos  Elrot  Elpos Eirot Flpos Flrot
Observation [T7] [T7, gt lg¢]
Raw 0.062 0.22 0.059 0.22 0.113 0.53
Fine 0.062 0.22 0.055 0.20 0.105 0.48
Parallel 0.062 0.22 0.052 0.19 0.111 0.49

TABLE V: Ablations on observation. E|_p.s (m) represents the links
tracking position error in pelvis frame; Fi ,ots (rad) represents the
links tracking rotation error in pelvis frame.

In contrast, when using only retargeted joint configura-
tions, the end-effector tracking accuracy is substantially worse.
Providing link SE(3) poses significantly improves perfor-
mance, while the retargeted joint configuration remains
an optional enhancement that enables a trade-off between
accuracy and latency. Jointly considering the results in
Tab. [[V] and Tab. [V] we observe an approximate trade-off of
1 mm in tracking accuracy per 1 ms of additional latency (on
an Apple M4 processor).

We note that all reported results are measured in simulation
with joint configurations retargeted offline prior to execution;
therefore, any tracking errors induced by retargeting la-
tency are not reflected in these metrics.

B. Optical Flow Latency Estimation

Fig. 7: Experimental setup for latency validation, with
and simultaneously recording.

To demonstrate the accuracy and reliability of the pro-
posed video-based latency estimation method, we conduct
a controlled validation experiment using multi-view video
recordings together with motion-capture-based ground-truth
measurements. Specifically, we record a single reciprocating
hand motion simultaneously using two cameras placed at
different viewpoints, observing the same motion from distinct
perspectives, as shown in Fig. [7] For each camera view, we
independently apply the optical-flow-based pipeline described
in Sec. [VI-D] to extract a one-dimensional motion signal and
estimate the temporal offset between the human and robot
motions, yielding two latency estimates.

In parallel, we attach optical motion capture markers to
the robot hand, enabling direct access to the ground-truth
Cartesian trajectories of the two end effectors, as shown
in Fig. B}(MoCap). Using these trajectories, we compute a
reference latency by measuring the temporal offset between
the corresponding motion signals derived from the motion
capture data. This motion-capture-based estimate does not rely



on image measurements or optical flow and therefore provides
an independent ground truth for validation.
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Fig. 8: Measured latencies of the same motion across different
views and methods. Normalized optical-flow projections (or estimated
velocities) and the corresponding position trajectories of the human
and are shown on the right.

Fig. |8| presents the experimental results. For the two camera
views, the middle column visualizes the projected optical
flows, while the right column shows the accumulated displace-
ment obtained by integrating the projected flow over time,
which approximates the underlying motion trajectory. The
estimated latencies are 55ms and 60 ms, and their agree-
ment serves as a consistency check for view invariance and
robustness of the method. For the motion-captured end-effector
positions, the middle column compares the estimated veloci-
ties, and the right column shows the directly tracked position
waveforms. The ground-truth latency calculated directly
from the tracked positions is 51 ms, which, together with
the velocities computed from these positions, is consistent with
the optical-flow-based estimates, confirming that the proposed
method accurately captures end-to-end system latency. Minor
discrepancies may arise due to non-ideal camera viewpoints or
imperfect alignment between the chosen projection direction
and the true motion. As illustrated in Fig. || the projected
optical flow in View 1 closely aligns with the motion-capture-
derived velocity, whereas the flow in View 2 is noticeably
noisier, leading to a less accurate latency estimate. In addition,
sub-frame-level variance (less than 16 ms for 60 FPS videos)
can naturally occur due to measurement noise and temporal
discretization effects.

C. Policy Learning Details

To clarify the policy learning formulation, we first in-
troduce the notation used in this section. As defined in
Sec. we denote the target pose of each tracking link
as TT . = [Rine Plink € SE(3), and use T7 to represent
the collection of all tracked link poses. The pose discrepancy
between the measured and target link poses is denoted as
ATL . = [AR], .k, APfin)- Notably, the pelvis link serves
as the root link in simulation and as the IMU mounting base
in the real robot; therefore, it is used to represent the global
position and orientation of the robot.

Based on the foot link position p£7foot, we estimate the

probability of foot—ground contact as follows:

pﬁ_foot,z —0.2 Hpﬁfoomxy” - 02)
0.2 0.2

Based on the estimated contact probability and the principle
of momentum conservation, we approximate the contact force.
We denote F as the proportion of the total body weight
supported by each contact.

H'Dk_foot =1- min(lv

_ Pf(_foot/E[Pt_15:t+15 4 Pt—151t+15]

]Ft
k_foot left_foot right_foot

where E denotes a weighted sum with a quadratic weighting
function that vanishes at both endpoints. We use the Joint-
Space (fine) setting in Table [IV| to obtain the reference joint
configuration ¢; at each frame, where the subscript ¢ denotes
the target configuration.

1) Observation: The future interpretation function .# is
defined as follows:

- - = T
Future pelvis translation Prelvis,t:t+H — Ppelvis t—1

. . r, T LT
Future pelvis rotation T helvis,t:t+H * Fpelvis,t—1
’

Link poses T
Link velocities (privilege) Viiinm
Retargeted joint configuration (privilege) | g¢, gt

Foot contact probability Py_foot

The proprioception observation oP™Pr® is listed below:

Last action at—1
Joint configuration q,9
Pelvis rotation Tpelvis
Pelvis linear velocity (privilege) | Ppelvis
Pelvis angular velocity Tpelvis

Additional privileged observation oP™" is listed below:

Domain Randomization Parameters | —
Residual joint configuration Aq, Aq
Residual link poses AT"
target measure
Foot contact force Fl oot Pl oot

2) Reward: The exact reward formulation involves axis-
and link-specific weighting terms and is therefore omitted
for brevity. Below, we present the simplified primary reward
components.

Reward Term Expression Scale
Global tracking link poses | —||(U™)~1T"||3 30
Local tracking link poses —||(UT')*1TT/ 12 20
Retargeted DoF position —llas — ql|3 3
Retargeted DoF velocity —lgs — dl|3 0.02
Foot contact reward - (Ff‘e_‘;ﬁzt - F{fi‘}gso‘gre> ? 3
Foot contact penalty — (I[Pi_toor < 0.2] - Fmeasure)? [ 1o
Torque Penalty —||7]|2 0.0001
Action rate —|lat—1 — atH% 0.2




3) Domain Randomization: Domain randomization is ap-
plied to motor dynamics, contact friction, and torso mass dis-
tribution. For motor dynamics, we apply four randomizations:

T = astrength(akp kp(qt —q+ 6offset) + Uk, (77 q't - qt))

Detailed distributions are as follows:

kp ratio oy, 4(0.8,1.2)

kg ratio oy, U(0.8,1.2)
Motor strength cisrength U(0.8,1.2)
Motor offset Bofset U(-0.1,0.1)
Friction ratio U(0.3,1.0)
Torso added mass (kg) Uu(-2,5)

Torso CoM displacement (m) | ¢/(—0.05,0.05)3

4) Policy Learning: All actor and critic networks are im-
plemented as MLPs with hidden dimensions [1024, 512, 256]
and ReLU as activation layer. We adopt an adaptive learning
rate schedule in PPO with a target KL divergence of 0.01. The
remaining PPO hyperparameters are listed below:

5y 0.99
AGAE 0.95
Entropy coefficient 0.003

Value loss coefficient | 1.0

Rollout length 24
Optimizer ADAM
# epoch 5

# mini batch 8

# iteration 6000

We utilize DAgger with the following hyperparameters:

learning rate | 0.0003

Batch size 256
Rollout length | 24
Optimizer ADAM
# epoch 10

# iteration 1500
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